Mod-4 and Mod-5

*Option in bold letters is the answer

- Q1. The force acting between proton and proton inside the nucleus is
 - (a) Coulombic
- (b) Nuclear
- (c) Both

- (d) None of these
- **Sol. (c)** Coulomb force between proton-proton and nuclear force between proton-neutron or proton-proton also act inside the nucleus
- Q2. Size of nucleus is of the order of
 - (a) 10⁻¹⁰ m
- (b) 10⁻¹⁵ m
- (c) 10^{-12} m
- (d) 10^{-19} m

- Q3. The mass number of a nucleus is equal to the number of
 - (a) Electrons it contains
- (b) Protons it contains
- (c) Neutrons it contains
- (d) Nucleons it contains
- Q4. Radius of ${}_{2}^{4}He$ nucleus is 3 fermi. The radius of ${}_{47}^{108}Ag$ nucleus will be
 - (a) 5 fermi
- (b) 6 fermi
- (c) 11.16 fermi
- (d) 8 fermi

Sol. (c)
$$r \propto A^{\frac{1}{3}} \Rightarrow \frac{r_2}{r_1} = \left(\frac{A_2}{A_1}\right)^{\frac{1}{3}} = \left(\frac{108}{4}\right)^{\frac{1}{3}}$$

$$\Rightarrow r_2 = 3(27)^{\frac{1}{3}} = 3 \times 3 = 9 \text{ fermi}$$

- Q5. The average binding energy per nucleon in the nucleus of an atom is approximately
 - (a) 8 eV
- (b) 8 KeV
- (c) 8 MeV
- (d) 8 J

- Q6. Nuclear binding energy is equivalent to
 - (a) Mass of proton
- (b) Mass of neutron
- (c) Mass of nucleus
- (d) Mass defect of nucleus

Sol. (d) B. E. = $\Delta m \ amu = \Delta m \times 931 \ MeV$

Q7. In a fission reaction $^{236}_{92}U \rightarrow ^{117}X + ^{117}Y + n + n$, the binding energy per nucleon of X and Y is 8.5 MeV whereas of ²³⁶U is 7.6 MeV. The total energy liberated will be about

- (a) 2000 KeV
- (b) 2 MeV
- (c) 200 MeV
- (d) 2000 MeV

Sol. (c) $\Delta E = 8.5 \times (117 + 117) - 7.6 \times 236 = 195.4 \, MeV \approx 200 \, MeV$

Q8. In a working nuclear reactor, cadmium rods (control rods) are used to

- (a) Speed up neutrons
- (b) Slow down neutrons (c) Absorb some neutrons (d) Absorb all neutrons

Sol. (c) Cadmium rods absorb the neutrons so they are used to control the chain reaction process.

Q9. Thermal neutrons can cause fission in

- (a) U^{235}
- (b) U^{238}
- (c) Pu^{238}
- (d) Th²³²

Sol. Fission of U^{235} occurs by slow neutrons only (of energy about 1eV) or even by thermal neutrons (of energy about $0.025 \ eV$).

Q10. Which of the following is the fusion reaction

- (a) ${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}He^{4}$
- (b) $_0n^1 +_7 N^{14} \longrightarrow_6 C^{14} +_1 H^1$
- (c) $_0n^1 +_{92}U^{238} \longrightarrow_{93} Np^{239} + \beta^{-1} + \gamma$
- (d) $_{1}H^{3} \rightarrow_{2} He^{3} + \beta^{-1} + \gamma$

Sol. (a) ${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}He^{4} + 24 \text{ MeV}$