Wave-9

*Option in bold letters is the answer

- Q1. Light is an electromagnetic wave. Its speed in vacuum is given by the expression
 - (a) $\sqrt{\mu_0 \varepsilon_0}$
- (b) $\sqrt{\frac{\mu_0}{\varepsilon_0}}$ (c) $\sqrt{\frac{\varepsilon_0}{\mu_0}}$

- $(\mathbf{d})\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
- Q2. If \vec{E} and \vec{B} are the electric and magnetic field vectors of E.M. waves then the direction of propagation of E.M. wave is along the direction of
 - (a) \vec{E}

(b) \vec{B}

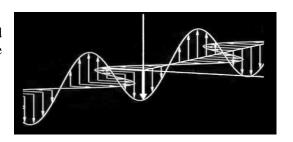
- (c) $\vec{E} \times \vec{R}$
- (d) None of these
- Q3. In an apparatus, the electric field was found to oscillate with an amplitude of 18 V/m. The magnitude of the oscillating magnetic field will be
 - (a) $4 \times 10^{-6} T$
- (b) $6 \times 10^{-8} T$
- (c) $9 \times 10^{-9} T$
- (d) $11 \times 10^{-11} T$

- **Sol.** (b) $c = \frac{E}{B} \implies B = \frac{E}{c} = \frac{18}{3 \times 10^8} = 6 \times 10^{-8} T$
- Q4. In an electromagnetic wave, the electric and magnetising field are $100 \, Vm^{-1}$ and $0.265 \, Am^{-1}$. The maximum energy flow is
 - (a) 26.5 W/m^2 (b) 36.5 W/m^2 (c) 46.7 W/m^2
- (d) None of these

Sol. (a) Here

$$E_0 = 100 \ V/m$$
, $H_0 = \frac{B_0}{\mu_0} = 0.265 \ A/m$.

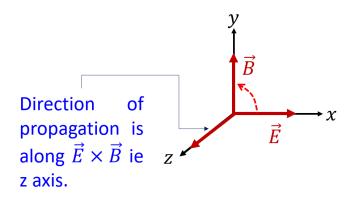
: Maximum rate of energy flow


$$S = \frac{E_0 \times B_0}{\mu_0} \Rightarrow S = \frac{E_0 B_0 sin 90^{\circ}}{\mu_0} = E_0 \times \frac{B_0}{\mu_0} \times sin 90^{\circ}$$

$$= 100 \times 0.265 \times 1 = 26.5 \ W/m^2$$

- Q5. The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along
 - (a) The same direction but differ in phase by 90°
 - (b) The same direction and are in phase

- (c) Mutually perpendicular directions and are in phase
- (d) Mutually perpendicular directions and differ in phase by 90°


Sol. (c) \vec{E} and \vec{B} are mutually perpendicular to each other and are in phase i.e. they become zero and minimum at the same place and at the same time.

- Q6. An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would generate such a wave
 - (a) E_x , B_y
- (b) E_{γ} , B_{χ}
- (c) E_z , B_x
- (d) E_{ν} , B_{z}

Sol. (a). As $\hat{\imath} \times \hat{\jmath} = \hat{k}$

 $\Rightarrow E_x \hat{\imath} \times B_y \hat{\jmath} = C \vec{k}$ i.e. E is along x-axis and B is along y-axis. E_x and B_y would generate a plane EM wave travelling in z-direction

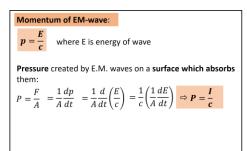
Q7. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then

(a)
$$p = 0, E = 0$$

(c)
$$p \# 0$$
, $E = 0$

(d)
$$p = 0$$
, E # 0

- **Sol.** (b) EM wave carry momentum and hence can exert pressure on surfaces. They also transfer energy to the surface so p # 0 and E # 0.
- Q8. The pressure exerted by an electromagnetic wave of intensity I(watt/m²) on a nonreflecting surface is [c is the velocity of light]


(a) Ic

(b) Ic^2

(c) I/c

(d) I/c^2

Sol.

Q9. Radiations of intensity 0.5 W/m^2 are striking a metal plate. The pressure on the plate is

(a)
$$0.166 \times 10^{-8} \ N/m^2$$

(b)
$$0.332 \times 10^{-8} \ N/m^2$$

(c)
$$0.111 \times 10^{-8} \ N/m^2$$

(d)
$$0.083 \times 10^{-8} \ N/m^2$$

Sol.

$$P = \frac{I}{c} \Rightarrow P = \frac{0.5 \ W/m^2}{3 \times 10^8 m/s} = 0.166 \times 10^{-8} \ N/m^2$$

Q10. Maxwell's equations describe the fundamental laws of

- (a) Electricity only
- (b) Magnetism only
- (c) Mechanics only
- (d) Both (a) and (b)